Feasibility Study for Adaptive Use of

The Former International Harvester Co. Building
960 Broadway, Albany, NY
(a.k.a. the Rodgers Liquor Co. building)

September 19, 2014

Prepared by:
TAP, Inc.
210 River Street
Troy, NY 12180
(518) 274-3050

With funding from:
New York State, a leader in 19th and 20th century industry, has seen those industries move elsewhere and businesses close over the last half-century. While this dynamic can be found throughout upstate New York, industrial corridors along water or transportation lines have the greatest concentration of vacant or greatly underutilized historic buildings. These industrial buildings are often found within struggling communities, as the loss of their dominant industry leads to population decline and closing of Main Street businesses.

From the opening of the Erie Canal in 1825 through the mid-20th century, companies built a rich and diverse assortment of headquarters, warehouses, mills, manufacturing and utility buildings reflecting the leading upstate industries. These include masonry-clad post and beam structures from the first half of the 19th century, through the Daylight Factories of the late 19th and early 20th centuries, and beyond to the large General Electric plants of the post-World War II period.

Throughout the second half of the 20th century, industry largely abandoned upstate New York, leaving behind canyons of historic industrial buildings. These buildings define the history of each municipality yet present very modern development challenges. Many communities have mixed feelings about these surviving reminders of their city’s boom and bust, seeing them as liabilities and remnants of the past, instead of assets and development opportunities.

The Preservation League’s Industrial Heritage Reuse Project is the first effort of its kind in New York State to promote historic industrial building redevelopment through condition survey and code analysis. Troy Architectural Program (TAP, Inc) has produced these feasibility studies for our five project sites, located within New York’s Capital Region in Montgomery, Schenectady, Albany, and Rensselaer Counties. We believe that these reports will spur industrial building rehabilitation in the project communities and provide models for similar properties across New York State.

Thank you to the J. M. Kaplan Fund for providing primary support for this project. We also thank the Erie Canalway National Heritage Corridor and National Grid for their project support.

Jay DiLorenzo, President
Preservation League of New York State
Feasibility Study for Adaptive Reuse of 960 Broadway, Albany, NY

Table of Contents:

I. Overview

II. Building Location

III. Building Description
 Exterior
 Interior
 Structural issues

IV. Proposed Use & Schematic Floor Plans

V. Code Analysis
 Occupancy & Construction Classification
 Fire Separation
 Exits
 Fire Protection Systems
 Handicapped Accessibility

VI. Scope of Work Needed

VII. Cost Estimate

VIII. Approval Processes
 Zoning, Planning, SEQR
 Listing on State and National Register of Historic Places
 Building Permit

IX. Funding Assistance
 Historic Tax Credits
 Low Income Housing Tax Credits
 New Markets Tax Credits
 NYS Consolidated Funding programs
 NYS Brownfield Redevelopment programs
 The Community Preservation Corporation
 Industrial Development Agencies (IDAs)

X Summary of Recommendations

Appendix A – Environmental Contaminants – Resources
Appendix B – Existing Building Code Table 912 Relative Hazard Categories
This page intentionally left blank.
I. Overview:

This Feasibility Study is part of the Preservation League of New York State’s Industrial Heritage Reuse Project. By providing building owners with schematic re-use alternatives, code evaluations, cost estimates, a list of funding assistance, and an outline of approvals required, the Preservation League hopes owners and community officials will successfully package a development plan. The project is supported by the J.M. Kaplan Fund with additional assistance from the Erie Canalway National Heritage Corridor and National Grid.

II. Building Location:

The building is located in the North Albany commercial/light industrial district. The property is a through-lot, on the corners of Broadway, Tivoli Street, and North Pearl Street.

There are several eateries and bars a few blocks away. The Palace/Cap Rep Theatre entertainment district sits one mile to the south, and the NYS Capitol and Empire State Plaza are a half mile beyond that. Albany Memorial Hospital and the access ramps to I-90 are just under one mile to the north. Broadway has a designated bike route and bus line that runs north/south to Menands and Watervliet. The Corning Preserve bike path and boat launch entrance along the Hudson River are under a mile to the southeast.
III. Building Description:

The building consists of a 4-story plus basement original section, with a 2-story addition on the south side. The exterior is brick, with limestone veneer at the ground level of the primary façade, as well as limestone window sills and other ornament. The original building was built in 1910, and the 1st story of the garage addition looks only slightly newer. The top story of the addition appears to be post-war (1940+), with brick that doesn’t quite match the original.

The two pairs of entry doors have been replaced with aluminum and glass storefront doors. Most of the windows are the original 6/6 wood double-hung windows or the original metal windows in the garage addition. Only the 2nd floor has replacement windows, smaller 1/1 double-hung windows with a fixed transom to fill the opening. Consistent with its use as a wholesaler and/or warehouse, there are ten loading bays with overhead garage doors on the 1st floor, as well as a large loading dock with a roof which abuts an abandoned train track spur.

The roof is a low-slope roof pitching to two interior roof drains. It has a brick parapet wall on all sides, and has recently been re-roofed with selvage edge roll roofing. There is evidence that both roof drain areas leaked for many years, and much of the roof deck and roof framing has been replaced in those areas. The garage roof is also flat, with gravel ballast over an unknown roof material, in good condition.
The original building has a heavy timber interior structure, consisting of 11”x11” solid wood columns and main bearing beams. The floor is solid wood consisting of 2 ½”x5” members on edge, side by side, resulting in a wood finished floor and a wood ceiling below. It is four stories with a basement and a small penthouse containing the elevator equipment room and the stair to the roof. The 1st story of the 2-story garage addition is the same type of construction. The 2nd story of the garage, added later, consists of brick exterior walls with steel beams and columns. With the exception of individual offices on the second floor, the space is wide open on all floors with few partitions and few finishes.

There is severe structural damage to the beams, columns, and floors below the two roof drain areas. This damage is continuous all the way down to the basement. The damaged beams and columns appear to be temporarily shored or braced for stability.

Various repairs have been done over the years. Some of the original solid wood floor framing has been replaced with 2x12 joists. Some areas have new wood flooring; some have no subfloor in place.

In some areas, particularly the basement, the heavy timber structure has been replaced with steel beams and columns. At this time, the building is stable and weather-tight.
IV. Proposed Use:

The owner wishes to use the building as a restaurant on part of the 1st floor, with apartments on the upper floors. He has already worked with an architect to provide schematic layouts to estimate the number of apartments possible. The following code analysis and approval processes are based on the schematic design provided by the owner’s architect and shown below.

Proposed Space:

1st fl Commercial = Group A-2 Restaurant
1st fl Apartments = Group R-2 Residential
1st fl Parking Garage Group S-2 Storage

Upper floor Apts. = Group R-2 Residential

TOTAL = 30 apts.

1st floor main bldg = 7,966 SF
Garage = 3,640 SF
TOTAL 1st fl. = 11,923 SF

2nd fl. main bldg = 7,966 SF
Over garage = 3,640 SF
TOTAL 2nd fl. = 11,923 SF

TOTAL 3rd fl. = 7,966 SF
TOTAL 4th fl. = 7,966 SF

Note: Schematic design drawings provided by Cotler Architecture, Latham, NY, and used with permission.
V. Code Analysis:

Occupancy Classification: (BC 303.1)

Last known occupancy: Group M Mercantile (formerly wholesale liquor) [now vacant].
Proposed occupancies: First floor: Group A-2 restaurant, Group R-2 apts., and Group S-2 garage
Upper floors: Group R-2 apartments

Construction Classification: (BC 602)

The original building and 1st floor of the garage addition were Type IV/HT (non-combustible exterior walls w/ Heavy Timber interior structure), but the 2nd floor of the garage addition (steel structure) and repairs to the original structure (steel and 2x lumber) have changed the classification to a Type IIIB (masonry exterior walls w/ combustible, non-rated interior structure). When converted to a Group R-2 occupancy, this building is now taller than allowable for a Type IIIB building per the table below (T. 503). There are several choices to bringing the height and occupancy use into compliance:

1. Change it back to a Type IV/HT. As this involves replacing perfectly good steel with new heavy timber, it is not a practical option.
2. Change it into a Type IIIA. This requires that all beams, columns, floor/ceiling assemblies, and roof assembly be 1-hour fire-rated. The most common method is to cover these structural elements and ceilings with drywall. May conflict with Historic Tax Credit requirements.
3. Seek a NYS Code Variance so that it may be classified as equivalent to a Heavy Timber building, or remain a Type IIIB (with non-fire-rated or lesser rated structural elements). A 2- to 6-month long process, with no guarantee of a favorable outcome; usually requires offering additional life-safety elements such as more exits, etc.
4. Evaluate the building per Chapter 13 of the Existing Building Code, which uses a point system for compliance, and may not require compliance with T. 503 below. No guarantees.

Allowable Building Heights and Areas: (BC T. 503)

The Code definition of Bldg. Height = “vertical distance from grade plane to the average height of the highest roof surface.” This excludes parapets, and we interpret the penthouse as excluded too.

<table>
<thead>
<tr>
<th></th>
<th>Group A-2 - Restaurant</th>
<th>Group R-2 - Apartments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type IIIA</td>
<td>Type IIIB</td>
</tr>
<tr>
<td>Max. building height</td>
<td>65’</td>
<td>55’</td>
</tr>
<tr>
<td>Increased height w/ sprinkler</td>
<td>85’</td>
<td>75’</td>
</tr>
<tr>
<td>Max. # stories</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Increased # stories w/ sprinkler</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Max. area (in SF)</td>
<td>14,000</td>
<td>9,500*</td>
</tr>
<tr>
<td>Increased area w/ sprinkler (2x)</td>
<td>19,000</td>
<td></td>
</tr>
</tbody>
</table>

* denotes deficiency
Fire Separation:

In a mixed use building with all new occupancies, the different occupancies must be fire-separated by fire barriers and horizontal assemblies. In a sprinklered building such as this, the fire-rating of the fire-separations shall be:

- Between Group A-2 & Group R-2 1-hour
- Between Group A-2 & Group S-2 garage No rating required
- Between Group R-2 & Group S-2 garage 1-hour

Heavy timber construction is allowed where a 1-hour fire-rating is required, so the original portions of the floor/ceiling assembly between the 1st floor restaurant and the 2nd floor apts. may remain. The area of the floor/ceiling repaired with 2x12 joists must either be replaced with a heavy timber floor or covered to obtain a 1-hour fire-rating.

Fire Protection Systems:

Sprinkler:

Per the Existing Building Code [EBC 912.2.1], where the occupancy group changes to an occupancy that requires a sprinkler system per the Building Code chapter 9, such system shall be provided throughout the area where the change of occupancy occurs. Per Chapter 9, both a Group A-2 Restaurant and Group R-2 apartments require an automatic sprinkler system, so the entire building will need to be sprinklered. The 1st floor Group A-2 will require a sprinkler system installed per NFPA 13. If there is a 2-hour fire-separation between the Group A-2 and Group R-2, the upper floors of Group R-2 will require a sprinkler system installed per NFPA 13R, which is allowed in residential buildings up to and including 4 stories in height. If there is no fire-separation between occupancy groups, the Group R-2 must also have a sprinkler system installed per NFPA 13. The sprinkler system must be monitored by a central station (outside alarm company) and must be tied to the building fire alarm system.

There is an existing sprinkler valve and sprinkler piping and heads visible on all stories of the building, but it is unknown if this is a working system. The existing sprinkler system will need to be evaluated by a professional sprinkler installer, and redesigned to comply with the NFPA 13 standards.
Standpipe:
Per EBC 704.3, because the work areas exceed 50% of any floor area, and a work area is more than 30’ above the lowest level of fire dept. access, a standpipe system will be required per the Building Code. Per BC chapter 9, a class I standpipe is required where the building is equipped throughout with a sprinkler system per NFPA 13 or 13R.

There is an existing Siamese connection on the front of the building, but it appears to be disconnected from the piping within the building. A repaired or new Class I standpipe system is required, with hose connections located in every required stairway, including at the highest landing of a stairway with access to the roof.

Fire alarm and detection:
Per the Existing Building Code [EBC 912.2.2], where the occupancy group changes to an occupancy that requires a fire alarm & detection system per the Building Code chapter 9, such system shall be provided throughout the area where the change of occupancy occurs. Per Chapter 9, Group A-2 and Group R-2 require both a manual fire alarm and an automatic fire detection system (smoke detectors).

Currently there are no fire alarm systems in the building. Both manual and automatic fire alarm systems shall be installed throughout the building and connected to a fire alarm panel, monitored by a central station.

Exits:
Because this is a change to an equal hazard occupancy per EBC 912.4 [Group M to Group A-2 and Group R-2], existing means of egress shall comply with EBC 805, which requires compliance with EBC 705. Per 705, a Group A-2 occupancy must have 2 exits if the occupant load exceeds 50 people, and Group R-2 must have 2 exits if over 3,500 SF and 4 dwelling units per story. Newly constructed or configured means of egress shall comply with BC Chap. 10.

There are two existing exit doors on the first floor; one on the front and one on the rear. Neither door is part of an enclosed exit path from the upper floors. There is one enclosed stair, but it does not exit to the exterior; it exits to the open 1st floor space.

For the Group A-2 Restaurant, two exits to the exterior are required. The main entrance on Broadway can serve as the first exit, and a second exit needs to be created a certain code-prescribed distance away from the first.

For the Group R-2 apartments, two fire-rated and enclosed exit stairs are required, also a certain code-prescribed distance away from each other. It may be possible to alter the existing enclosed stair such that it exits directly to the exterior at the north side of the building. It will be necessary to construct a second enclosed exit stair, from top floor to exit discharge level (at grade), that is 2-hour fire-rate, as well as a fire-rated corridor connecting the two exit stairs.

For the Group S-2 1st floor parking garage, one exit is permitted where the maximum occupancy load of the space is 29 people. (The occupancy load is estimated at 21 people based on area of garage.)
Handicapped Accessibility:

Per the Existing Building Code, buildings with a change of occupancy shall have all of the following accessible features:

1. At least one accessible building entrance.
2. At least one accessible route from accessible entrance to primary function areas.
3. Signage per BC 1110.
4. Accessible parking, if parking is provided.
5. At least one accessible passenger loading zone, if loading zones are provided.
6. At least one accessible route connecting accessible parking to accessible entrance.
7. At least one accessible toilet room per BC 1109.2.1, where WC’s provided.
8. Where >4 Group R-2 dwelling units, 25% shall comply with BC 1107.2.

There are no existing accessible building entrances. The front entrance has doors at grade and an interior stair; the rear entrance has exterior stairs up to the doors at the 1st floor level. There is an existing freight elevator in an existing hoistway.

The Group A-2 restaurant requires full accessibility, including an accessible entrance, accessible route within, and accessible toilet rooms. It is possible that a wheelchair lift can be added to the front entry adjacent to the interior stairs, to provide accessibility to the 1st floor.

The Group R-2 apts. require an accessible entrance, vertical accessibility to each floor, and 25% of all units must be accessible. The rear entry might be reworked to include a ramp for accessibility to the 1st floor. The existing elevator hoistway may be retrofitted for a new elevator, or a new elevator hoistway in a better location may be constructed, to provide vertical accessibility.
VI. Scope of Work Needed:

This building needs a tremendous amount of work to bring it back into usable space. Because the building is mostly raw space, with nothing to be reused, almost every building system is a big-ticket item.

The first priority is repairing the structural system. This will include replacing all damaged beams, columns, and floor framing.

The building envelope needs work to infill the many overhead door openings with wall and windows/doors, and to bring it into compliance with the NYS Energy Code, including window repair and replacement, and insulation of walls and attic/roof. If pursuing Historic Tax Credits, each of these items requires discussion with and approval from the NY State Historic Preservation Office (SHPO) so that original, historic building elements and spaces are maintained as much as possible. For example, spray foam insulation on exterior brick walls is seldom approved by SHPO, as it is considered irreversible.

It is important to note that if the building is listed on the National and State Register of Historic Places, it would be exempt from the current (2010) NYS Energy Code, although this exemption is likely to sunset in the next 2-3 years. However, to keep the utility bills reasonable and the building occupants comfortable, it is recommended that the Energy Code be followed as much as possible.

New enclosed stair towers and an elevator need to be installed to comply with the means of egress (exit) and handicapped accessibility requirements.

There are no finished spaces in the building to be reused, so tenant fit-up (framing, drywall, floor and ceiling finishes, interior doors and hardware, etc.) will be extensive.

All new mechanical systems (plumbing, HVAC, electrical, and fire protection) need to be installed throughout the building.

VII. Cost Estimates

At this stage of the project (the conceptual stage when no details are available), it is useful to use square foot costs to estimate the construction costs. The estimated costs represent what the project may be built for, based on data of what other similar projects have been built for, but it is no guarantee, merely a useful starting point.

For this project, a square foot cost could range from $125 - $150 per SF. At a total area of 47,744 SF (including basement), that means a total budget of about $5.9 – 7.1 million for construction renovation. Other items that may drive up these costs include:

- Abatement of hazardous materials
- Site work & parking areas
- High-end finishes and equipment
- Architectural and engineering fees
- Financing, accounting, and legal fees
- Insurance
- Developer’s fee
VIII. Approval Processes:

1. City of Albany Zoning and Planning, including SEQR:

The property is zoned C-M Light Industrial. It is not in a local historic district. Permitted uses in this zone include light manufacturing, auto repair, warehouse and wholesale, business services, contractors, etc. Neither a restaurant nor residential units are permitted uses, nor are they special permit uses. According to Brad Glass at the City Planning office, the proposed uses would require Use Variances in this district.

A Use Variance is a special authorization by the Zoning Board for a use which is otherwise not allowed by the zoning regulations. The Board requires the owner to show that the applicable zoning regulations cause unnecessary hardship, by demonstrating to the Board that for each permitted use:

a.) the owner cannot make a reasonable return on his investment, backed by financial evidence;

b.) the alleged hardship is unique to this building and does not apply to most others in the zone;

c.) the requested variance, if issued, will not alter the essential character of the neighborhood; and

d.) the alleged hardship has not been self-created.

There are also off-street parking requirements that need to be met. Per the Zoning regulations:

<table>
<thead>
<tr>
<th>Proposed Use</th>
<th>Required parking ratio</th>
<th>Required # of parking spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartment house</td>
<td>1 space per unit x 30+ units</td>
<td>30 minimum</td>
</tr>
<tr>
<td>Restaurant, sit-down</td>
<td>1 space per 50 SF of dining room x estimated 2546 SF</td>
<td>51 spaces minimum</td>
</tr>
</tbody>
</table>

Currently there is insufficient parking on the property and no availability on adjacent lots. Unless another parcel is purchased or an agreement is made for parking on a neighbor’s lot, the proposed uses would require an exemption (variance) from the parking requirements.

The City also requires site plan review by the Planning Board. As part of this application, a State Environmental Quality Review (SEQR) environmental assessment is done to identify and mitigate any potential environmental impacts produced by the proposed project. The City of Albany requires the short form Environmental Assessment Form (EAF). If the proposed project is determined not to have significant adverse environmental impacts, a determination of no significance (Negative Declaration) is prepared. It is likely that the proposed uses of this building will be considered a “neg dec.”

The process for Zoning and Planning approvals consist of preparing a site plan per the Zoning requirements and submitting it along with the Zoning and Planning applications, and attending a public Zoning Board meeting and public Planning Board meeting, where each Board will make a decision. The approval process can take a minimum of 2-3 months.

2. Listing the building on the NYS and National Register:

The first step in getting the building listed is to submit a State and National Registers Program Applicant Form and a Historic Resource Inventory Form to the State Historic Preservation Office (SHPO). These materials will be evaluated by the staff for compliance with the listing criteria. This has been submitted, and SHPO has determined that the building is eligible for listing.
Once basic compliance is determined, the owner must submit all other documentation as required to complete the National Register Nomination Form. This documentation can involve working with an architect or other preservation consultant, as it includes research, maps, and photographs. The draft Nomination is shared with local official for feedback, then submitted to the State Review Board for approval and entry onto the State Register. Nominations must be submitted 3 months in advance of the Review Board’s meeting. After State approval, the Nomination is sent to the National Park Service for approval and entry onto the National Register. For more information, visit the NYSHPO website: https://nysparks.com/shpo/national-register/

The process to get the building listed can take a minimum of 6 months. Listing the building helps pave the way for using the Historic Tax Credits. See the “Funding Assistance” section of this study.

3. Building Permit

Once the Zoning and Planning variances and approvals are obtained, a building permit is required. To apply for a permit, submit the following to the Building Dept.

- Building Permit Application;
- Stamped drawings from a licensed architect or engineer which address structural issues, building code issues, energy code issues, and all mechanicals;
- Estimate of the cost of construction, upon which the permit fee is based;
- Payment for the building permit fee; and
- Proof of liability insurance with the City of Albany additionally insured must be submitted along with proof of worker’s compensation insurance.

For more information, visit the City Building Dept. website: http://www.albanyny.org/Government/Departments/DivisionOfBuildingsAndRegulatoryCompliance/Forms.aspx

The process of hiring an architect, finalizing the design, complying with all code requirements, producing construction documents, undergoing building department review, and obtaining a building permit can take a minimum of 4-6 months, if everything goes smoothly. Common delays which can increase this time include, but are not limited to, extensive design exploration, change of direction or scope of work during design phase, negotiating design elements with the SHPO or code official, and cash flow problems.
IX. Funding Assistance:

1. **State and Federal Historic Tax Credits:**

 http://www.nps.gov/tps/tax-incentives.htm
 http://nysparks.com/shpo/tax-credit-programs/

 Since this building has been determined eligible for listing on the National Register, it may be eligible for both Federal and NYS Rehabilitation Tax Credits, totaling 40% of the cost of the rehabilitation. The credits may be taken by the property owner, or syndicated to investors whose purchase of the credits provides upfront financing for rehabilitation.

 The Federal Rehabilitation Tax Credit program is administered by the National Park Service (NPS) and the Internal Revenue Service in partnership with the State Historic Preservation Office (SHPO). An income tax credit of 20% of the cost of substantial rehabilitation is available for the rehabilitation of “certified historic,” income-producing buildings. Owner-occupied residential properties do not qualify for this tax credit.

 Part 1 of this process is obtaining “certified historic structure” status, by securing National Register eligibility and beginning the National Register designation process, to get the building listed on the National Register. Part 2 consists of a property narrative, pictures that document the architectural and historical features of the building in its current state, and a description of the proposed work. It should be filed with the SHPO before the rehabilitation begins, and both SHPO and the NPS must approve all proposed work. This process can take several months.

 After the rehabilitation is complete, Part 3 is submitted and the SHPO and NPS review the work and certify compliance with the Part 2 approved scope of work. The 20% credit is based on the total qualified rehabilitation expenses incurred. Working with a tax professional is recommended to properly claim this credit.

 The NYS Rehabilitation Tax Credit must be used with the Federal Rehabilitation Tax Credit Program for Income Producing Properties. Owners of income producing properties that have been approved to receive the 20% federal rehabilitation tax credit automatically qualify for the additional 20% state rehabilitation tax credit if the property is located in an eligible census tract and the Part 2 and Part 3 state fees have been paid. There is no application form. After Part 3 of the federal application is approved by the National Park Service and, the state fees are paid, the New York State Office of Parks, Recreation, and Historic Preservation will issue a certification allowing owners to take the state credit.

2. **Low Income Housing Tax Credits**

 http://www.nyshcr.org/Programs/LIHC/ [federal]
 http://www.nyshcr.org/Programs/SLIHC/ [state]

 The LIHC program provides a federal income tax credit for project owners who develop rental housing that meets federal criteria for income, occupancy, and rent, with state approval. (Typically the units must serve those whose household income does not exceed 60% of area median income.)

 The SLIHC provides a state income tax credit to investors in qualified low-income housing. Assisted units must serve households whose incomes meet more stringent criteria than the federal program (typically 90% of area median income).
3. **New Markets Tax Credits**
 http://www.cdfifund.gov/what_we_do/programs_id.asp?programID=5

 The New Markets Tax Credit Program attracts investment capital to qualified low-income communities, based on specific census tract demographics. The tax credits are awarded to Community Development Entities, who match projects with investments. New Markets Tax Credits are available for operating businesses, commercial or industrial real estate, or mixed-use buildings that meet the commercial/industrial depreciation test with over 20% of the gross income derived from non-residential activity. *This project is most likely not eligible for these tax credits.*

4. **New York State Consolidated Funding Application**
 http://regionalcouncils.ny.gov/

 In 2011, Governor Andrew M. Cuomo created 10 Regional Councils to develop long-term strategic plans for economic growth. The annual Consolidated Funding Application became the umbrella, single-grant procedure for these key programs:

 - **The Environmental Protection Fund**
 http://nysparks.com/grants/grant-programs.aspx

 The Environmental Protection Fund is a matching grant program to improve, protect, preserve, rehabilitate, restore or acquire properties listed on the State or National Registers of Historic Places and for structural assessments and/or planning for such projects.

 - **New York Main Street**
 http://www.nyshcr.org/Programs/NYMainStreet/

 The New York Main Street (NYMS) Program provides resources to assist New York’s communities with Main Street and downtown revitalization efforts. The program funds projects that provide economic development and housing opportunities in downtown, mixed-use commercial districts. A primary goal of the program is to stimulate reinvestment and leverage additional funds to establish and sustain downtown and neighborhood revitalization efforts. Funds may be used to help rehabilitate upper-floor space and larger anchor projects.

 - **Empire State Development (ESD)**
 http://esd.ny.gov/BusinessPrograms.html
 http://www.esd.ny.gov/smallbusiness.html

 ESD grants fund capital projects intended to foster job growth. Funds may be used for planning, acquisition, renovation and equipment purchase.

 - **NYSERDA**
 https://www.nyserda.ny.gov/

 The New York State Energy Research and Development Authority offers financial incentives to assist large commercial projects make energy efficiency improvements. A similar program exists for multi-family buildings of five or more units.
5. **NYS Brownfield Redevelopment Programs**
 - **Environmental Restoration Program**
 Under the Environmental Restoration Program, the NYS Department of Environmental Conservation provides grants to municipalities and community-based organizations to reimburse up to 90 percent of on-site eligible costs and 100% of off-site eligible costs for site investigation and remediation activities. Once remediated, the property may then be reused for commercial, industrial, residential or public use.
 - **Brownfield Opportunity Areas Program**
 The Brownfield Opportunity Areas Program, made possible by the Superfund/Brownfield law in October 2003, provides municipalities and community based organizations with assistance, up to 90 percent of the eligible project costs, to complete revitalization plans and implementation strategies for areas or communities affected by the presence of brownfield sites, and site assessments for strategic brownfield sites.

6. **The Community Preservation Corporation (CPC):**
 http://www.communityp.com
 The Community Preservation Corporation (CPC) is a not-for-profit mortgage finance company which specializes in lending for the preservation and construction of multi-family affordable housing and downtown revitalization projects throughout New York State. CPC offers a range of products, including:
 - Construction financing
 - Permanent financing
 - Freddie Mac
 - Coop financing
 - Supportive and Special Needs Housing financing

7. **Industrial Development Agencies and Local Development Corporations**
 An IDA is a municipal-sponsored agency designed to promote economic development because the agency can offer several benefits to private companies as inducements for them to relocate to, expand in or remain in their jurisdictions. An IDA can:
 - Offer tax breaks to eligible projects whose developers in turn may agree to a PILOT (Payment in Lieu of Taxes,) usually for an amount less than the true tax amount;
 - Acquire, own and dispose of property;
 - Directly issue debt;
 - Own property that is exempt from property taxes and mortgage recording taxes, and;
 - Make purchases exempt from state and local sales taxes in support of an approved project.
A LDC is a private, not-for-profit corporations often created by, or for the benefit of, local governments for economic development. A LDC can:

- Construct, acquire, rehabilitate, and improve industrial or manufacturing plants;
- Assist financially in such construction, acquisition, rehabilitation, and improvement;
- Maintain such plants for others;
- Acquire real or personal property by purchase, lease, gift, or bequest;
- Borrow money and issue bonds, notes, and other obligations therefore;
- Sell, lease, mortgage or otherwise dispose of any such plants or any of their real or personal property upon terms determined by the LDC.

These local IDA and LDC may assist in the reuse of historic properties:

Albany County
http://www.albanycounty.com/Businesses/ACIDA.aspx

City of Albany
http://albanyida.com/
http://capitalizealbany.com/

Many of these programs have complex requirements. It is recommended that you work with a developer, attorney, accountant, and/or architect who have experience with the program requirements.
X. Summary of Recommendations:

960 Broadway in Albany is a typical warehouse building, originally built as Heavy Timber construction. It has been added to and repaired with steel and 2x lumber which are outside the definition of Heavy Timber. The net result is that the building has dropped to a lesser construction classification and will require a code interpretation or variance to allow it be fully developed on all floors.

TAP recommends replacing or fire-protecting sections of the building that are lower rated than Heavy Timber Construction, and working with code officials to accept the building as the equivalent of a Heavy Timber structure. This approach may allow more original materials and elements of the building to remain visible, rather than covered in gypsum board. Retaining historic materials, elements, and spaces is important if receiving historic tax credits.

The plan for the building calls for upper floor apartments and a first floor restaurant. **TAP endorses this proposal. From a code standpoint, it is a viable project.**

An accessible route must be provided into the restaurant and into the residential entrance, and 25% of the apartments must be accessible (minimum Type B).

The building is not in a Historic District and is not yet individually listed on the National Register. The building was recently determined eligible for listing by the NY State Historic Preservation Office. **TAP recommends proceeding with NR nomination and a filing for Historic Tax Credits, per the owner’s wishes.**

The new upper floor apartments and a first floor restaurant will both require Zoning and Planning approval. Both are in process. Approvals hinge on a parking plan that will satisfy the surrounding businesses. **TAP recommends pursuing parking solutions not just for local approvals and surrounding businesses, but to increase the building’s desirability for both the restaurant and residential tenants.**

This building is a stable structure with serious localized damage due to roof leaks. The scope of repair work needed to make the building habitable is extensive. The cost of energy conservation measures, the repair of structural and surficial damages, the installation of all new mechanical, electrical and plumbing systems, and the extensive window repair required suggest a substantial project budget. **TAP estimates the cost at $5.9 to $7.1 million.**

This project starts out with an exciting concept and a motivated owner. If local approvals can be obtained and if residential urban pioneers can be attracted to a new locale by an appealing renovation, this should be an achievable project.
Older buildings often contain materials that are environmental hazards or contaminants, both in their existing state and during their removal. Many of these materials are regulated by the federal Environmental Protection Agency (EPA) or other governmental bodies. Since contamination of the surrounding air, soil, and adjacent building spaces can occur during removal, it is important to follow safe removal practices to protect the health of workers, neighbors, and future building occupants. Below is a list of the most commonly found environmental contaminants and the best practices for removal.

1. Lead

Lead exposure continues to be a significant health concern despite federal and state policies and practices aimed at reducing it. Lead-based paint is a major source of lead poisoning for children and can also affect adults. Lead exposure from lead plumbing pipes is another potential source. The lifelong effects of childhood exposure, to even small amounts of lead or lead dust, are well established by medical research, and include learning disabilities, behavioral problems, and retarded mental and physical development. Severe lead poisoning in children and adults can cause irritability, poor muscle coordination and damage to the kidneys, nerves and brain. Lead poisoning also may increase blood pressure in adults. Because lead does not break down naturally, it remains a problem until removed.

Lead paint was outlawed for residential purposes in 1978, yet it is still present in millions of buildings and homes, particularly in neighborhoods with older building stock. Lead paint may be found on any surface, but is most commonly found on exterior-painted surfaces, interior woodwork, doors, and windows. When properly maintained and managed, this paint poses little risk, although friction surfaces (windows and window sills, doors and door frames, and stairs and railings) are a concern. Lead-based paint that peels or deteriorates is especially risky. Lead dust is most commonly found around friction surfaces, as well as in the soil around a building. Lead poisoning can occur not only through visible lead-based paint chips and flakes, but also from inhaling lead contaminated dust or soil.

Eliminating the lead hazard(s) in a building can be done by abatement work or by renovation, repair, and painting (RRP). Abatement work is a specialized activity designed to permanently remove lead in the building and includes lead-based paint inspections, risk assessments and paint removal. RRP activities (including most building renovations) disturb paint as a consequence of the activity, but they are often undertaken for reasons unrelated to lead issues. One can either presume the existence of lead-based paint and dust or have trained personnel take actual XRF readings to locate specific areas containing lead-based paint. Soil samples should also be taken since contamination of the soil is possible from paint chips. EPA requires individuals and firms who perform abatement projects in pre-1978 target housing and child-occupied facilities to be RRP-trained and certified, and to follow specific work practices, including verifying that the work area is clean (free of lead dust) after completion of the renovation.

If lead plumbing pipes still exist, either within the building or connecting the building to the water line in the road, there are two options. Either remove and replace them with copper or other code-allowed material, or install a reverse osmosis water system to purify the drinking water.

For more information about lead hazards and abatement, visit the website: http://www2.epa.gov/lead
2. Asbestos

Asbestos is a generic term referring to a group of naturally occurring fibrous minerals, prized for their thermal and insular properties, as well as their flexibility and durability. Vermiculite, a lightweight, granular, fire-resistant insulation, is also considered an asbestos containing material (ACM). Generally, asbestos-containing material that is in good condition and will not be disturbed (by renovations, for example) will not release asbestos fibers, and does not pose a health risk. Asbestos containing material is most hazardous when friable, or easily crumbled or powdered by hand. Asbestos fibers may be released into the air by the disturbance of asbestos-containing material during product use, demolition work, building or home maintenance, repair, and remodeling. Exposure may occur when the asbestos-containing material releases particles and fibers into the air, which are then inhaled or ingested. Exposure to asbestos increases your risk of developing lung disease and cancer.

Although the EPA began banning various types of asbestos containing materials in the 1970’s, many construction products containing asbestos are not banned and are actively used today. Therefore, ACM are still present in many buildings. Asbestos was and is commonly used as a fire retardant, heat insulator, sound reducer. It can be found in roofing cement and coatings, exterior shingles, drywall compound, flooring tiles and mastic, wall and ceiling insulation, pipe insulation, gaskets on furnace and boiler doors, and glazing compound on windows. Vermiculite is commonly found as attic or concrete block fill insulation.

Eliminating the hazard of asbestos before a renovation can only be done by identifying and removing the ACM. This work should be done by trained asbestos professionals, before demolition and construction begin. An asbestos inspector can inspect a building, take samples of suspected materials for testing, and advise about what corrections are needed. They can also ensure the corrective-action contractor has followed proper procedures, including proper clean up, and can monitor the air to ensure no increase of asbestos fibers. An asbestos contractor can remove the ACM.

For more information about asbestos and abatement, visit the website: http://www2.epa.gov/asbestos.

3. Mold

Molds are fungi, found both indoors and out, which reproduce and spread by spores. Exposure to molds can cause respiratory symptoms ranging from coughing and wheezing in healthy people, to nasal stuffiness, eye or skin irritation, or asthma in mold-sensitive people, to fever, shortness of breath, or lung infections in workers with long-term exposed to mold.

Mold grows best in warm, damp, and humid conditions, and mold spores can even survive in dry conditions that do not support normal mold growth. Indoors they can be found where humidity levels are high, such as basements or showers, or anywhere building elements are wet due to leaks in the building envelope (particularly roofs) or plumbing.

Eliminating the hazard of mold starts with identifying the sources of water, condensation, and humidity, and eliminating them via repairs, maintenance, or ventilation. Completely clean up mold, and dry water-damaged areas, using the most appropriate cleaning and drying methods for damaged/contaminated materials. These methods include:

- using a wet-vac to vacuum up actively wet areas;
- damp-wiping non-porous surfaces or scrubbing with a bleach solution;
- carefully containing and discarding wet and moldy porous surfaces such as wood and carpet in doubled 6-mil poly bags, or wrapping large items in plastic sheeting and securing with duct tape;
• using a HEPA-vacuum for final cleanup of remediation areas after materials have been thoroughly
dried and contaminated materials removed. HEPA vacuums are also recommended for cleanup of dust
that may have settled on surfaces outside the remediation area.
• To reduce the risk of airborne mold exposure, use appropriate Personal Protective Equipment (PPE)

The use of a biocide, such as chlorine bleach, is not recommended as a routine practice during mold
remediation, although there may be instances where professional judgment may indicate its use. Any
remaining spores will not grow if the moisture problem in the building has been resolved. If you choose
to use disinfectants or biocides, always ventilate the area taking care not to distribute mold spores
throughout an unaffected area. Biocides are toxic to humans, as well as to mold, so appropriate PPE
should be worn. Some biocides are considered pesticides, and some States require that only registered
pesticide applicators apply these products.

For more information about mold and its removal, visit the website: http://www2.epa.gov/mold.

4. Guano

Guano is bird excrement. It is often accompanied by other organic matter such as feathers, bones,
carcasses, and the bugs and rodents that are attracted to such. Guano itself poses a respiratory health risk,
particularly during removal when airborne particles are likely to be inhaled, while the live specimens
(birds, bugs, etc.) carry disease and parasites.

Guano is present when there is or was a bird infestation; usually pigeons or even bats. Piles of guano can
be seen where birds roost or below areas where birds perch. Typical locations include attic floors, tops of
joists or other exposed horizontal members, on walls below nests, on debris and other floor surfaces.

Eliminating the hazard of guano starts with determining if there is an existing infestation, and taking
measures to seal off all entry points to the building prior to removal. Using an Industrial Cleaning or Pest
Control company is recommended over do-it-yourself or contractor removal, as these professionals know
the governmental regulations and have all the proper personal protective equipment. Prior to actual
removal, design a plan which includes the following:

• Identify all locations to be decontaminated (rooms, floors, walls, beams, sills, ductwork, etc.)
• Identify all locations to be protected from airborne dust, both within building and at perimeter.
• Identify all items to be removed (just guano and organic matter, or the contaminated materials like
 insulation also?)
• Wet or dry removal? (Wet reduces dust and airborne particulates.)
• Method of removal from building elements (shovel, scraper, wire brush, power washer, HEPA-
 vacuum?)
• Method of removal from building (bag, bucket, barrel) and route out of building. This is particularly
 important if the building is partially occupied.
• Disinfection/wet cleaning of areas and building elements after bulk removal with a 1:10 bleach
 solution.
• Disposal of material must comply with governmental regulations.
5. Radon

Exposure to radon in the home or workplace is responsible for an estimated 20,000 lung cancer deaths each year. Exposure to radon is the second leading cause of lung cancer after smoking. Radon is an odorless, tasteless and invisible gas produced by the decay of naturally occurring uranium in soil and water, and is a proven carcinogen. Lung cancer is the only known effect on human health from exposure to radon in air. Thus far, there is no evidence that children are at greater risk of lung cancer than are adults.

Radon in air is ubiquitous. Radon is found in outdoor air and in the indoor air of buildings of all kinds. According to the NYS Department of Health, there are 37 counties in NY designated as high radon risk areas and they include: Albany, Columbia, Rensselaer, Schoharie and Washington Counties. The EPA recommends radon mitigation in buildings where the radon level is 4 pCi/L (picocuries per liter) or more. Because there is no known safe level of exposure to radon, EPA also recommends mitigation for radon levels between 2 pCi/L and 4 pCi/L. The average radon concentration in the indoor air of America's homes is about 1.3 pCi/L. The average concentration of radon in outdoor air is 0.4 pCi/L or 1/10th of EPA's 4 pCi/L action level. Radon can also be found in the water supply, most commonly if the building’s water source is ground water.

Eliminating the hazard of radon begins with testing for its presence. Both long and short term radon testing devices are available, and will show the level of radon present in the air of the space tested. Since radon in the soil primarily enters a building through the foundation and floor slab, reducing radon in a building can be done by sealing cracks in foundations and slabs, and providing proper ventilation to allow the radon to exit the building by either natural or mechanical means. The primary method of radon reduction, or mitigation, is a vent pipe system and fan, which pulls radon from beneath the building and vents it to the outside. This system, known as a soil suction radon reduction system, does not require major changes to the building. If radon is found in the public water supply, the water supplier should be contacted to take action. If radon is found in the water from a private well, it can be removed by installing a point-of-entry treatment system or a point-of-use treatment device. Lowering high radon levels requires technical knowledge and special skills. A qualified contractor who is trained to fix radon problems can study the radon problem in the building and recommend the right treatment method.

For more information about radon hazards and mitigation, visit the website: http://www2.epa.gov/radon.

6. Fuel Oil Storage Tanks

Fuel oil storage tanks, both under-ground and above-ground, can become an environmental hazard and a financial liability when they begin to leak. Clean-up costs due to a leak are borne by the owner. If a fuel oil leak contaminates the soil, clean-up costs can be $20,000 – $50,000. If it contaminates the groundwater, the costs can exceed $100,000.

Fuel oil storage tanks are used primarily for heating oil, but also for gasoline or other petroleum products. For comparison, a single-family home heating oil tank might be 275-1,000 gallons; a multi-family or commercial property might have tanks up to 20,000 gallons. They are commonly found in basements, yards, and underground. Because all responsibility for leaking tanks belongs to the owner, it is important to know if and where there are any such storage tanks on the property, especially underground tanks. The NYS Department of Conservation (NYSDEC) regulates both UST’s (underground storage tanks) and AST’s (above-ground storage tanks) when at least one tank exceeds 1,100 gallons. A building with (3) 500-gallon tanks, for example, would not be regulated. UST’s must be registered with DEC, require periodic testing, and must meet other performance standards.
Eliminating the hazard of fuel oil storage tanks starts with identifying their location, age, condition, and registry with the NYSDEC. If there are known petroleum tanks on the property, it is important to review their maintenance records, and keep them current. NYSDEC has rules and enforcement actions for buildings which fail to properly register tanks, report spills and remediate contamination. It is critical therefore to hire the right kind of consultant for leaking oil tanks, such as an environmental remediation specialist. Regulated heating oil tanks that are out of service for more than a year must undergo closure per NYSDEC’s closure requirements. The tank must be cleaned out, visually inspected for holes, but no groundwater or soil samples are ordinarily required to achieve closure unless there is visual evidence or a leak. It is therefore possible that a heating oil tank that was closed in place and obtained regulatory closure by NYSDEC may have impacted the property. It is always advisable for purchasers of property with abandoned heating oil tanks to review the closure documentation to see if sampling was conducted. In the absence of such documentation, purchasers should consider conducting their own sampling since the purchasers could be strictly liable under the state Navigation Law if an abandoned tank that was closed in place has impacted the environment. It is crucial that purchasers determine if abandoned tanks exist or are discovered, particularly heating oil tanks, and that prior to the closing or before the purchaser takes control, they be removed.

To search the NYSDEC database of known, regulated tanks, visit:

For more information on petroleum bulk storage regulations, visit:
http://www.dec.ny.gov/regulations/2387.html
This page intentionally left blank.
EVALUATING HAZARD CATEGORIES per §912 of the Existing Building Code:

When considering a change of use to an existing building it is advisable to consider whether the proposed new use increases the hazard classification of the building. When a change of occupancy is made to an equal or lower hazard category, it is treated much like a continued use. But, when a change of occupancy is made to a higher hazard category in any of the categories, the building must meet many of the requirements of new construction for those categories. These tables do not apply if using the EBC Chapter 13 Performance Compliance Method.

<table>
<thead>
<tr>
<th>SEC. 912 Existing Bldg Code 2010</th>
<th>TABLE 912.4 MEANS OF EGRESS</th>
<th>TABLE 912.5 HEIGHTS AND AREAS</th>
<th>TABLE 912.6 EXPOSURE OF EXTERIOR WALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARD (Highest)</td>
<td>OCCUPANCY CLASSES</td>
<td>OCCUPANCY CLASSES</td>
<td>OCCUPANCY CLASSES</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>A-1, A-2, A-3, A-4, I, R-1, R-2, R-4</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>I-2, I-3, I-4</td>
<td>E, F-1, S-1, M</td>
<td>F-1, M, S-1</td>
</tr>
<tr>
<td>3</td>
<td>A, E, I-1, M, R-1, R-2, R-4</td>
<td>B, F-2, S-2, A-5, R-3, U</td>
<td>A, B, E, I, R</td>
</tr>
<tr>
<td>4</td>
<td>B, F-1, R-3, S-1</td>
<td></td>
<td>F-2, S-2, U</td>
</tr>
<tr>
<td>5 (Lowest)</td>
<td>F-2, S-2, U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OCCUPANCY CLASSIFICATION per §302.1 of the Building Code of NYS

Structures or portions of structures shall be classified with respect to occupancy in one or more of the groups listed below. A room or space that is intended to be occupied at different times for different purposes shall comply with all of the requirements that are applicable to each of the purposes for which the room or space will be occupied.

Occupancy Classifications: (Note descriptions below are summaries, not full quotes from code)

1. Assembly = Group A:
 - A-1 Performing Arts or Motion Pictures
 - A-2 Food or Drink Consumption
 - A-3 Uses not Classified elsewhere in Group A
 - A-4 Spectator Seating Arenas
 - A-5 Outdoor Activities

2. Business = Group B

3. Educational = Group E

4. Factory and Industrial = Group F:
 - F-1 Moderate Hazard (all that are not F-2)
 - F-2 Low Hazard (non-combustibles)

5. High Hazard = Group H:
 - H-1 Detonation Hazard
 - H-2 High Flame Hazard
 - H-3 Readily Combustible
 - H-4 High Health Hazard
 - H-5 Hazardous Research & Development

6. Institutional = Group I:
 - I-1 Required Supervised Residential
 - I-2 24 hour care
 - I-3 Restrained and Secured Persons
 - I-4 Daycare Facilities

7. Mercantile = Group M (retail or wholesale)

8. Residential = Group R:
 - R-1 Transient Occupancy
 - R-2 Apartment Houses
 - R-3 Permanent Residence not otherwise listed
 - R-4 Assisted Living, less than 16 people

9. Storage = Group S:
 - S-1, Moderate Hazard (all that are not S-2)
 - S-2 Low Hazard (non-combustibles)

10. Utility and Miscellaneous = Group U